Latest Electronics, Computer Science ,Mechanical, Electrical And Information Technology Seminar Topics,Full Reports,PPT,PDF,DOC downloads for Engineering Students. For more Reports and PPT,please mail to seminar990@gmail.com
Thursday, June 7, 2007
Seminar Topics
Smart Dust
Smart dust is tiny electronic devices designed to capture mountains of information about their surroundings while literally floating on air. Nowadays, sensors, computers and communicators are shrinking down to ridiculously small sizes. If all of these are packed into a single tiny device, it can open up new dimensions in the field of communications.The idea behind 'smart dust' is to pack sophisticated sensors, tiny computers and wireless communicators in to a cubic-millimeter mote to form the basis of integrated, massively distributed sensor networks. They will be light enough to remain suspended in air for hours. As the motes drift on wind, they can monitor the environment for light, sound, temperature, chemical composition and a wide range of other information, and beam that data back to the base station, miles away.
M-Voting
¢ Every citizen above the age of 18 years has got the right to vote and hence obtaining their fingerprints and storing in the database along with their birth/death record becomes necessary.¢ User sends his finger print (secured print is encrypted and sent as sequence of data in encoded form) to the service provider.¢ Service provider verifies the fingerprint and checks for the validity of voting and sends voter list (a mobile ballot paper) through SMS.¢ User casts his vote and sends 2nd message.
Since mobile phone has connectivity with computer systems it is easy to store and access at the service provider and results be published instantly.
3G vs WiFi
Java Ring
A Java Ring is a finger ring that contains a small microprocessor with built-in capabilities for the user, a sort of smart card that is wearable on a finger. Sun Microsystem's Java Ring was introduced at their JavaOne Conference in 1998 and, instead of a gemstone, contained an inexpensive microprocessor in a stainless-steel iButton running a Java virtual machine and preloaded with applets (little application programs). The rings were built by Dallas Semiconductor.
Workstations at the conference had "ring readers" installed on them that downloaded information about the user from the conference registration system. This information was then used to enable a number of personalized services. For example, a robotic machine made coffee according to user preferences, which it downloaded when they snapped the ring into another "ring reader."
Although Java Rings aren't widely used yet, such rings or similar devices could have a number of real-world applications, such as starting your car and having all your vehicle's components (such as the seat, mirrors, and radio selections) automatically adjust to your preferences.
Face Recognition Technology
Bacterio-Rhodopsin Memory
The bacterio-rhodopsin protein is one of the most promising organic memory materials. Seven helix-shaped polymers form a membrane structure, which contains a molecule known as the retinal chromophor. The chromophor absorbs light of a certain color and is therefore able to switch to another stable state in addition to its original state. Only blue light can change the molecule back to its original state.
There have been many methods and proteins researched for use in computer applications in recent years. However, among the most promising approaches, and the focus of this particular web page, is 3-Dimensional Optical RAM storage using the light sensitive protein bacterio-rhodopsin. Bacterio-rhodopsin is a protein found in the purple membranes of several species of bacteria, most notably Halobacterium halobium. This particular bacteria lives in salt marshes. Salt marshes have very high salinity and temperatures can reach 140 degrees Fahrenheit. Unlike most proteins, bacterio-rhodopsin does not break down at these high temperatures.
Light Tree
A light path can create logical (or virtual) neighbors out of nodes that may be geographically far apart from each other. A light path carries not only the direct traffic between the nodes it interconnects, but also the traffic from nodes upstream of the source to nodes upstream of the destination. A major objective of light path communication is to reduce the number of hops a packet has to traverse.
Under light path communication, the network employs an equal number of transmitters and receivers because each light path operates on a point-to-point basis. However this approach is not able to fully utilize all of the wavelengths on all of the fiber links in the network, also it is not able to fully exploit all the switching capability of each WRS.A light tree is a point to point multipoint all optical channel, which may span multiple fiber links. Hence, a light tree enables single-hop communication between a source node and a set of destination nodes. Thus, a light tree based virtual topology can significantly reduce the hop distance, thereby increasing the network throughput.
Virtual keyboard
SyncML
The popularity of mobile computing and communications devices can be traced to their ability to deliver information to users when needed. Users want ubiquitous access to information and applications from the device at hand, plus they want to access and update this information on the fly. The ability to use applications and information on one mobile device, then to synchronize any updates with the applications and information back at the office, or on the network, is key to the utility and popularity of this pervasive, disconnected way of computing. Unfortunately, we cannot achieve these dual visions: Networked data that support synchronization with any mobile device Mobile devices that support synchronization with any networked data Rather, there is a proliferation of different, proprietary data synchronization protocols for mobile devices. Each of these protocols is only available for selected transports, implemented on a selected subset of devices, and able to access a small set of net-worked data.
4G Wireless Systems
Fourth generation wireless system is a packet switched wireless system with wide area coverage and high throughput. It is designed to be cost effective and to provide high spectral efficiency . The 4g wireless uses Orthogonal Frequency Division Multiplexing (OFDM), Ultra Wide Radio Band (UWB),and Millimeter wireless. Data rate of 20mbps is employed. Mobile speed will be up to 200km/hr.The high performance is achieved by the use of long term channel prediction, in both time and frequency, scheduling among users and smart antennas combined with adaptive modulation and power control. Frequency band is 2-8 GHz. it gives the ability for world wide roaming to access cell anywhere.
Wireless mobile communications systems are uniquely identified by "generation designations. Introduced in the early 1980s, first generation (1G) systems were marked by analog frequency modulation and used primarily for voice communications. Second generation (2G) wireless communications systems, which made their appearance in the late 1980s, were also used mainly for voice transmission and reception The wireless system in widespread use today goes by the name of 2.5G-an "in between " service that serves as a stepping stone to 3G. Whereby 2G communications is generally associated with Global System for Mobile (GSM) service, 2.5G is usually identified as being "fueled " by General Packet Radio Services (GPRS) along with GSM. In 3G systems, making their appearance in late 2002 and in 2003, are designed for voice and paging services, as well as interactive media use such as teleconferencing, Internet access, and other services. The problem with 3G wireless systems is bandwidth-these systems provide only WAN coverage ranging from 144 kbps (for vehicle mobility applications) to 2 Mbps (for indoor static applications). Segue to 4G, the "next dimension " of wireless communication. The 4g wireless uses Orthogonal Frequency Division Multiplexing (OFDM), Ultra Wide Radio Band (UWB), and Millimeter wireless and smart antenna. Data rate of 20mbps is employed. Mobile speed will be up to 200km/hr.Frequency band is 2 ]8 GHz. it gives the ability for world wide roaming to access cell anywhere.
EDGE
A new modulation technique and error-tolerant transmission methods, combined with improved link adaptation mechanisms, make these EGPRS rates possible. This is the key to increased spectrum efficiency and enhanced applications, such as wireless Internet access, e-mail and file transfers.
GPRS/EGPRS will be one of the pacesetters in the overall wireless technology evolution in conjunction with WCDMA. Higher transmission rates for specific radio resources enhance capacity by enabling more traffic for both circuit- and packet-switched services. As the Third-generation Partnership Project (3GPP) continues standardization toward the GSM/EDGE radio access network (GERAN), GERAN will be able to offer the same services as WCDMA by connecting to the same core network. This is done in parallel with means to increase the spectral efficiency. The goal is to boost system capacity, both for real- time and best-effort services, and to compete effectively with other third-generation radio access networks such as WCDMA and cdma2000.
Blu Ray Disc
Blu ray also promises some added security, making ways for copyright protections. Blu .ray discs can have a unique ID written on them to have copyright protection inside the recorded streams. Blu .ray disc takes the DVD technology one step further, just by using a laser with a nice color.
Bio-Molecular Computing
DNA computing began in 1994 when Leonard Adleman proved thatDNA computing was possible by finding a solution to a real- problem, a Hamiltonian Path Problem, known to us as the Traveling Salesman Problem,with a molecular computer. In theoretical terms, some scientists say the actual beginnings of DNA computation should be attributed to Charles Bennett's work. Adleman, now considered the father of DNA computing, is a professor at the University of Southern California and spawned the field with his paper, "Molecular Computation of Solutions of Combinatorial Problems." Since then, Adleman has demonstrated how the massive parallelism of a trillion DNA strands can simultaneously attack different aspects of a computation to crack even the toughest combinatorial problems.